3.1.12 \(\int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx\) [12]

3.1.12.1 Optimal result
3.1.12.2 Mathematica [A] (verified)
3.1.12.3 Rubi [A] (verified)
3.1.12.4 Maple [B] (verified)
3.1.12.5 Fricas [B] (verification not implemented)
3.1.12.6 Sympy [F]
3.1.12.7 Maxima [F(-2)]
3.1.12.8 Giac [F(-2)]
3.1.12.9 Mupad [B] (verification not implemented)

3.1.12.1 Optimal result

Integrand size = 37, antiderivative size = 122 \[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx=-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}-\frac {(C e-B f) \arcsin (d x)}{d f^2}+\frac {\left (C e^2-B e f+A f^2\right ) \arctan \left (\frac {f+d^2 e x}{\sqrt {d^2 e^2-f^2} \sqrt {1-d^2 x^2}}\right )}{f^2 \sqrt {d^2 e^2-f^2}} \]

output
-(-B*f+C*e)*arcsin(d*x)/d/f^2+(A*f^2-B*e*f+C*e^2)*arctan((d^2*e*x+f)/(d^2* 
e^2-f^2)^(1/2)/(-d^2*x^2+1)^(1/2))/f^2/(d^2*e^2-f^2)^(1/2)-C*(-d^2*x^2+1)^ 
(1/2)/d^2/f
 
3.1.12.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.28 \[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx=\frac {-\frac {C f \sqrt {1-d^2 x^2}}{d^2}+\frac {2 (-C e+B f) \arctan \left (\frac {d x}{-1+\sqrt {1-d^2 x^2}}\right )}{d}-\frac {2 \sqrt {d^2 e^2-f^2} \left (C e^2+f (-B e+A f)\right ) \arctan \left (\frac {\sqrt {d^2 e^2-f^2} x}{e+f x-e \sqrt {1-d^2 x^2}}\right )}{(d e-f) (d e+f)}}{f^2} \]

input
Integrate[(A + B*x + C*x^2)/(Sqrt[1 - d*x]*Sqrt[1 + d*x]*(e + f*x)),x]
 
output
(-((C*f*Sqrt[1 - d^2*x^2])/d^2) + (2*(-(C*e) + B*f)*ArcTan[(d*x)/(-1 + Sqr 
t[1 - d^2*x^2])])/d - (2*Sqrt[d^2*e^2 - f^2]*(C*e^2 + f*(-(B*e) + A*f))*Ar 
cTan[(Sqrt[d^2*e^2 - f^2]*x)/(e + f*x - e*Sqrt[1 - d^2*x^2])])/((d*e - f)* 
(d*e + f)))/f^2
 
3.1.12.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {2112, 2185, 25, 27, 719, 223, 488, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {d x+1} (e+f x)} \, dx\)

\(\Big \downarrow \) 2112

\(\displaystyle \int \frac {A+B x+C x^2}{\sqrt {1-d^2 x^2} (e+f x)}dx\)

\(\Big \downarrow \) 2185

\(\displaystyle -\frac {\int -\frac {d^2 f (A f-(C e-B f) x)}{(e+f x) \sqrt {1-d^2 x^2}}dx}{d^2 f^2}-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {d^2 f (A f-(C e-B f) x)}{(e+f x) \sqrt {1-d^2 x^2}}dx}{d^2 f^2}-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {A f-(C e-B f) x}{(e+f x) \sqrt {1-d^2 x^2}}dx}{f}-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}\)

\(\Big \downarrow \) 719

\(\displaystyle \frac {\frac {\left (A f^2-B e f+C e^2\right ) \int \frac {1}{(e+f x) \sqrt {1-d^2 x^2}}dx}{f}-\frac {(C e-B f) \int \frac {1}{\sqrt {1-d^2 x^2}}dx}{f}}{f}-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\frac {\left (A f^2-B e f+C e^2\right ) \int \frac {1}{(e+f x) \sqrt {1-d^2 x^2}}dx}{f}-\frac {\arcsin (d x) (C e-B f)}{d f}}{f}-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {-\frac {\left (A f^2-B e f+C e^2\right ) \int \frac {1}{-d^2 e^2+f^2-\frac {\left (e x d^2+f\right )^2}{1-d^2 x^2}}d\frac {e x d^2+f}{\sqrt {1-d^2 x^2}}}{f}-\frac {\arcsin (d x) (C e-B f)}{d f}}{f}-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\left (A f^2-B e f+C e^2\right ) \arctan \left (\frac {d^2 e x+f}{\sqrt {1-d^2 x^2} \sqrt {d^2 e^2-f^2}}\right )}{f \sqrt {d^2 e^2-f^2}}-\frac {\arcsin (d x) (C e-B f)}{d f}}{f}-\frac {C \sqrt {1-d^2 x^2}}{d^2 f}\)

input
Int[(A + B*x + C*x^2)/(Sqrt[1 - d*x]*Sqrt[1 + d*x]*(e + f*x)),x]
 
output
-((C*Sqrt[1 - d^2*x^2])/(d^2*f)) + (-(((C*e - B*f)*ArcSin[d*x])/(d*f)) + ( 
(C*e^2 - B*e*f + A*f^2)*ArcTan[(f + d^2*e*x)/(Sqrt[d^2*e^2 - f^2]*Sqrt[1 - 
 d^2*x^2])])/(f*Sqrt[d^2*e^2 - f^2]))/f
 

3.1.12.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 719
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] + 
Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, 
d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 2112
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f 
_.)*(x_))^(p_.), x_Symbol] :> Int[Px*(a*c + b*d*x^2)^m*(e + f*x)^p, x] /; F 
reeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x] && EqQ[b*c + a*d, 0] & 
& EqQ[m, n] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))
 

rule 2185
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] : 
> With[{q = Expon[Pq, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x) 
^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*e^(q - 1)*(m + q + 2*p + 1))), x] + Si 
mp[1/(b*e^q*(m + q + 2*p + 1))   Int[(d + e*x)^m*(a + b*x^2)^p*ExpandToSum[ 
b*e^q*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x 
)^(q - 2)*(a*e^2*(m + q - 1) - b*d^2*(m + q + 2*p + 1) - 2*b*d*e*(m + q + p 
)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, d 
, e, m, p}, x] && PolyQ[Pq, x] && NeQ[b*d^2 + a*e^2, 0] &&  !(EqQ[d, 0] && 
True) &&  !(IGtQ[m, 0] && RationalQ[a, b, d, e] && (IntegerQ[p] || ILtQ[p + 
 1/2, 0]))
 
3.1.12.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(288\) vs. \(2(114)=228\).

Time = 1.66 (sec) , antiderivative size = 289, normalized size of antiderivative = 2.37

method result size
risch \(\frac {C \sqrt {d x +1}\, \left (d x -1\right ) \sqrt {\left (-d x +1\right ) \left (d x +1\right )}}{f \,d^{2} \sqrt {-\left (d x +1\right ) \left (d x -1\right )}\, \sqrt {-d x +1}}+\frac {\left (\frac {\left (B f -C e \right ) \arctan \left (\frac {\sqrt {d^{2}}\, x}{\sqrt {-d^{2} x^{2}+1}}\right )}{f \sqrt {d^{2}}}-\frac {\left (A \,f^{2}-B e f +C \,e^{2}\right ) \ln \left (\frac {-\frac {2 \left (d^{2} e^{2}-f^{2}\right )}{f^{2}}+\frac {2 d^{2} e \left (x +\frac {e}{f}\right )}{f}+2 \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}\, \sqrt {-d^{2} \left (x +\frac {e}{f}\right )^{2}+\frac {2 d^{2} e \left (x +\frac {e}{f}\right )}{f}-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}}{x +\frac {e}{f}}\right )}{f^{2} \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}}\right ) \sqrt {\left (-d x +1\right ) \left (d x +1\right )}}{f \sqrt {-d x +1}\, \sqrt {d x +1}}\) \(289\)
default \(\frac {\left (-A \,\operatorname {csgn}\left (d \right ) \ln \left (\frac {2 d^{2} e x +2 \sqrt {-d^{2} x^{2}+1}\, \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}\, f +2 f}{f x +e}\right ) d^{2} f^{2}+B \,\operatorname {csgn}\left (d \right ) \ln \left (\frac {2 d^{2} e x +2 \sqrt {-d^{2} x^{2}+1}\, \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}\, f +2 f}{f x +e}\right ) d^{2} e f -C \,\operatorname {csgn}\left (d \right ) \ln \left (\frac {2 d^{2} e x +2 \sqrt {-d^{2} x^{2}+1}\, \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}\, f +2 f}{f x +e}\right ) d^{2} e^{2}+B \arctan \left (\frac {\operatorname {csgn}\left (d \right ) d x}{\sqrt {-d^{2} x^{2}+1}}\right ) d \,f^{2} \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}-C \,\operatorname {csgn}\left (d \right ) f^{2} \sqrt {-d^{2} x^{2}+1}\, \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}-C \arctan \left (\frac {\operatorname {csgn}\left (d \right ) d x}{\sqrt {-d^{2} x^{2}+1}}\right ) d e f \sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}\right ) \sqrt {-d x +1}\, \sqrt {d x +1}\, \operatorname {csgn}\left (d \right )}{\sqrt {-\frac {d^{2} e^{2}-f^{2}}{f^{2}}}\, f^{3} \sqrt {-d^{2} x^{2}+1}\, d^{2}}\) \(373\)

input
int((C*x^2+B*x+A)/(f*x+e)/(-d*x+1)^(1/2)/(d*x+1)^(1/2),x,method=_RETURNVER 
BOSE)
 
output
C/f/d^2*(d*x+1)^(1/2)*(d*x-1)/(-(d*x+1)*(d*x-1))^(1/2)*((-d*x+1)*(d*x+1))^ 
(1/2)/(-d*x+1)^(1/2)+1/f*((B*f-C*e)/f/(d^2)^(1/2)*arctan((d^2)^(1/2)*x/(-d 
^2*x^2+1)^(1/2))-(A*f^2-B*e*f+C*e^2)/f^2/(-(d^2*e^2-f^2)/f^2)^(1/2)*ln((-2 
*(d^2*e^2-f^2)/f^2+2/f*d^2*e*(x+e/f)+2*(-(d^2*e^2-f^2)/f^2)^(1/2)*(-d^2*(x 
+e/f)^2+2/f*d^2*e*(x+e/f)-(d^2*e^2-f^2)/f^2)^(1/2))/(x+e/f)))*((-d*x+1)*(d 
*x+1))^(1/2)/(-d*x+1)^(1/2)/(d*x+1)^(1/2)
 
3.1.12.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 235 vs. \(2 (114) = 228\).

Time = 4.22 (sec) , antiderivative size = 493, normalized size of antiderivative = 4.04 \[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx=\left [-\frac {{\left (C d^{2} e^{2} - B d^{2} e f + A d^{2} f^{2}\right )} \sqrt {-d^{2} e^{2} + f^{2}} \log \left (\frac {d^{2} e f x + f^{2} - \sqrt {-d^{2} e^{2} + f^{2}} {\left (d^{2} e x + f\right )} - {\left (\sqrt {-d^{2} e^{2} + f^{2}} \sqrt {-d x + 1} f + {\left (d^{2} e^{2} - f^{2}\right )} \sqrt {-d x + 1}\right )} \sqrt {d x + 1}}{f x + e}\right ) + {\left (C d^{2} e^{2} f - C f^{3}\right )} \sqrt {d x + 1} \sqrt {-d x + 1} - 2 \, {\left (C d^{3} e^{3} - B d^{3} e^{2} f - C d e f^{2} + B d f^{3}\right )} \arctan \left (\frac {\sqrt {d x + 1} \sqrt {-d x + 1} - 1}{d x}\right )}{d^{4} e^{2} f^{2} - d^{2} f^{4}}, \frac {2 \, {\left (C d^{2} e^{2} - B d^{2} e f + A d^{2} f^{2}\right )} \sqrt {d^{2} e^{2} - f^{2}} \arctan \left (-\frac {\sqrt {d^{2} e^{2} - f^{2}} \sqrt {d x + 1} \sqrt {-d x + 1} e - \sqrt {d^{2} e^{2} - f^{2}} {\left (f x + e\right )}}{{\left (d^{2} e^{2} - f^{2}\right )} x}\right ) - {\left (C d^{2} e^{2} f - C f^{3}\right )} \sqrt {d x + 1} \sqrt {-d x + 1} + 2 \, {\left (C d^{3} e^{3} - B d^{3} e^{2} f - C d e f^{2} + B d f^{3}\right )} \arctan \left (\frac {\sqrt {d x + 1} \sqrt {-d x + 1} - 1}{d x}\right )}{d^{4} e^{2} f^{2} - d^{2} f^{4}}\right ] \]

input
integrate((C*x^2+B*x+A)/(f*x+e)/(-d*x+1)^(1/2)/(d*x+1)^(1/2),x, algorithm= 
"fricas")
 
output
[-((C*d^2*e^2 - B*d^2*e*f + A*d^2*f^2)*sqrt(-d^2*e^2 + f^2)*log((d^2*e*f*x 
 + f^2 - sqrt(-d^2*e^2 + f^2)*(d^2*e*x + f) - (sqrt(-d^2*e^2 + f^2)*sqrt(- 
d*x + 1)*f + (d^2*e^2 - f^2)*sqrt(-d*x + 1))*sqrt(d*x + 1))/(f*x + e)) + ( 
C*d^2*e^2*f - C*f^3)*sqrt(d*x + 1)*sqrt(-d*x + 1) - 2*(C*d^3*e^3 - B*d^3*e 
^2*f - C*d*e*f^2 + B*d*f^3)*arctan((sqrt(d*x + 1)*sqrt(-d*x + 1) - 1)/(d*x 
)))/(d^4*e^2*f^2 - d^2*f^4), (2*(C*d^2*e^2 - B*d^2*e*f + A*d^2*f^2)*sqrt(d 
^2*e^2 - f^2)*arctan(-(sqrt(d^2*e^2 - f^2)*sqrt(d*x + 1)*sqrt(-d*x + 1)*e 
- sqrt(d^2*e^2 - f^2)*(f*x + e))/((d^2*e^2 - f^2)*x)) - (C*d^2*e^2*f - C*f 
^3)*sqrt(d*x + 1)*sqrt(-d*x + 1) + 2*(C*d^3*e^3 - B*d^3*e^2*f - C*d*e*f^2 
+ B*d*f^3)*arctan((sqrt(d*x + 1)*sqrt(-d*x + 1) - 1)/(d*x)))/(d^4*e^2*f^2 
- d^2*f^4)]
 
3.1.12.6 Sympy [F]

\[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx=\int \frac {A + B x + C x^{2}}{\left (e + f x\right ) \sqrt {- d x + 1} \sqrt {d x + 1}}\, dx \]

input
integrate((C*x**2+B*x+A)/(f*x+e)/(-d*x+1)**(1/2)/(d*x+1)**(1/2),x)
 
output
Integral((A + B*x + C*x**2)/((e + f*x)*sqrt(-d*x + 1)*sqrt(d*x + 1)), x)
 
3.1.12.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate((C*x^2+B*x+A)/(f*x+e)/(-d*x+1)^(1/2)/(d*x+1)^(1/2),x, algorithm= 
"maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.12.8 Giac [F(-2)]

Exception generated. \[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate((C*x^2+B*x+A)/(f*x+e)/(-d*x+1)^(1/2)/(d*x+1)^(1/2),x, algorithm= 
"giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Limit: Max order reached or unable 
to make series expansion Error: Bad Argument Value
 
3.1.12.9 Mupad [B] (verification not implemented)

Time = 0.01 (sec) , antiderivative size = 5803, normalized size of antiderivative = 47.57 \[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x} (e+f x)} \, dx=\text {Too large to display} \]

input
int((A + B*x + C*x^2)/((e + f*x)*(1 - d*x)^(1/2)*(d*x + 1)^(1/2)),x)
 
output
(4*C*e*atan((37748736*C^5*d^4*e^10*((1 - d*x)^(1/2) - 1))/(((d*x + 1)^(1/2 
) - 1)*(37748736*C^5*d^4*e^10 + 67108864*C^5*e^6*f^4 - 100663296*C^5*d^2*e 
^8*f^2)) + (67108864*C^5*e^6*f^4*((1 - d*x)^(1/2) - 1))/(((d*x + 1)^(1/2) 
- 1)*(37748736*C^5*d^4*e^10 + 67108864*C^5*e^6*f^4 - 100663296*C^5*d^2*e^8 
*f^2)) - (100663296*C^5*d^2*e^8*f^2*((1 - d*x)^(1/2) - 1))/(((d*x + 1)^(1/ 
2) - 1)*(37748736*C^5*d^4*e^10 + 67108864*C^5*e^6*f^4 - 100663296*C^5*d^2* 
e^8*f^2))))/(d*f^2) - (4*B*atan((67108864*B^5*e*f^4*((1 - d*x)^(1/2) - 1)) 
/(((d*x + 1)^(1/2) - 1)*(67108864*B^5*e*f^4 + 37748736*B^5*d^4*e^5 - 10066 
3296*B^5*d^2*e^3*f^2)) + (37748736*B^5*d^4*e^5*((1 - d*x)^(1/2) - 1))/(((d 
*x + 1)^(1/2) - 1)*(67108864*B^5*e*f^4 + 37748736*B^5*d^4*e^5 - 100663296* 
B^5*d^2*e^3*f^2)) - (100663296*B^5*d^2*e^3*f^2*((1 - d*x)^(1/2) - 1))/(((d 
*x + 1)^(1/2) - 1)*(67108864*B^5*e*f^4 + 37748736*B^5*d^4*e^5 - 100663296* 
B^5*d^2*e^3*f^2))))/(d*f) - (8*C*((1 - d*x)^(1/2) - 1)^2)/(f*((d*x + 1)^(1 
/2) - 1)^2*(d^2 + (2*d^2*((1 - d*x)^(1/2) - 1)^2)/((d*x + 1)^(1/2) - 1)^2 
+ (d^2*((1 - d*x)^(1/2) - 1)^4)/((d*x + 1)^(1/2) - 1)^4)) - (A*atan((f^2*1 
i - d^2*e^2*1i - (f^2*((1 - d*x)^(1/2) - 1)^2*1i)/((d*x + 1)^(1/2) - 1)^2 
+ (d^2*e^2*((1 - d*x)^(1/2) - 1)^2*1i)/((d*x + 1)^(1/2) - 1)^2)/(f*(f + d* 
e)^(1/2)*(f - d*e)^(1/2) - (f*((1 - d*x)^(1/2) - 1)^2*(f + d*e)^(1/2)*(f - 
 d*e)^(1/2))/((d*x + 1)^(1/2) - 1)^2 + (2*d*e*((1 - d*x)^(1/2) - 1)*(f + d 
*e)^(1/2)*(f - d*e)^(1/2))/((d*x + 1)^(1/2) - 1)))*2i)/((f + d*e)^(1/2)...